
Multi-scale probability distributions of solar wind speed fluctuations at

1 AU described by a generalized Tsallis distribution

L. F. Burlaga and A. F.-Viñas
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[1] The probability distributions of changes in the solar
speed observed at 1 AU by ACE during 1999 on scales
from 1 hour to 171 days and at a scale of 64 sec can
be described by a single distribution function. The function
is a simple generalization of the Tsallis q-distribution, a
probability distribution that was derived from nonextensive
statistical mechanics. The fluctuations in speed are related to
(1) intermittent turbulence and shocks on the smallest
scales; (2) ejecta, corotating streams, slow flows, interaction
regions, etc. on intermediate scales; and (3) systems of
interacting flows involving all of these features, on scales
greater than the solar rotation period. INDEX TERMS: 2111

Interplanetary Physics: Ejecta, driver gases, and magnetic clouds;

2139 Interplanetary Physics: Interplanetary shocks; 2149

Interplanetary Physics: MHD waves and turbulence; 2164

Interplanetary Physics: Solar wind plasma. Citation: Burlaga,

L. F., and A. F.-Viñas (2004), Multi-scale probability distributions

of solar wind speed fluctuations at 1 AU described by a

generalized Tsallis distribution, Geophys. Res. Lett., 31,

L16807, doi:10.1029/2004GL020715.

1. Introduction

[2] On the scale of a year, the structure of the solar wind
is very complex and the solar boundary conditions needed
for multiscale deterministic models are not available. A
statistical approach is required in addition to deterministic
models in order to describe and explain the structure of solar
wind at 1 AU and out to 100 AU during an interval of 1 year
[Burlaga, 1975, 1995].
[3] Probability distribution functions (PDFs) have long

been used to describe turbulence on small scales [Marsch
and Tu, 1997]. Burlaga and Forman [2002] (hereinafter
referred to as BF) used PDFs to describe the large-scale
fluctuations of speed observed at 1 AU during 1999, close
to the period of maximum solar activity. There were many
transient flows and shocks during 1999 [Richardson et
al., 2000]. BF found that the form of the PDFs varied
significantly with scale: highly kurtotic at scales of hours,
skewed at small and intermediate (days) scales, and Gaussian
at scales greater than the solar rotation period, 27 days.
[4] The purpose of this work is to show that all of the

PDFs observed in the solar wind speed fluctuations at 1 AU
by Burlaga and Forman on scales from 1 hr to 171 days as
well as on a scale of 64 sec can be described by a single
distribution function, which is a simple generalization of the
Tsallis q-distribution [Tsallis, 1988; Tsallis and Brigatti,
2004].

2. The Distribution Function

[5] Anonextensive (non-additive) entropySq=
P

(pi
q�1)/

(1 � q) was introduced by Tsallis [1988] to derive a
generalization of the Bolzmann-Gibbs statistical mechanics.
Here pi is the probability of the ith microstate, and q is a
constant measuring the degree of nonextensivity. By
extremizing this entropy subject to two constraints, Tsallis
derived the ‘‘Tsallis q-distribution function’’

Rq xð Þ ¼ Aq 1þ Bq q� 1ð Þx2
� �1= 1�qð Þ ¼ Ak 1þ Bk x2=k

� ��k ð1Þ

where k � 1/(q � 1). The function on the right of
equation (1) is the traditional (empirical) kappa function,
used for many years in space physics, but without any
foundation on first principles, to model speed distribution
functions of plasma particles [Olbert, 1968; Vasyliunas,
1968; Maksimovic et al., 1997; Leubner, 2002]. The Tsallis
entropy generalization extends the traditional Boltzmann-
Gibbs thermostatistics to physical systems where long-range
forces, long-memory effects, and multifractal structure are
dominant. The Tsallis distribution is kurtotic for small k and
it tends to a Gaussian (i.e., Maxwellian) in the limit k ! 1
(q ! 1). A transition from kurtotic to Gaussian PDFs at
relatively small and large scales, respectively, was observed
by BF. The advantage of considering a Tsallis distribution,
rather than other PDFs such as that of Castaing et al.
[1990], is that the former is based on an entropy principle,
can be related to statistical mechanics, and contains the
traditional Boltzmann-Gibbs statistical mechanics as a
special case of the Tsallis thermostatistics. The other PDFs
in the literature are based on either mathematical convolu-
tions or specific phenomenological models. This entropy
principle was motivated by systems with multifractal
structure [Tsallis, 1988]. Since multifractal structure is
found in the solar wind [Burlaga, 1995], it is reasonable to
consider the application of the Tsallis distribution in the
studies of the solar wind.
[6] The Tsallis q-distribution is symmetric and has no

skewness, so it cannot model the PDFs observed by BF,
which were skewed, except in the Gaussian limit. Therefore,
we consider a ‘‘generalized Tsallis distribution’’, obtained by
adding a cubic term to the Tsallis distribution in equation (1),
viz.

Rqt dVtð Þ ¼ At 1þ Bt dVtð Þ2=k
h

þCt dVtð Þ3
i�k

ð2Þ

Our choice of the form for the cubic term is not unique.
Beck [2000] used a skew distribution similar to equation (2)
to describe laboratory turbulence, but he included a linear
term as well as a cubic term. The cubic term is meaningful
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only for dVt not too large. Beck gave a physical argument
in support of his choice of a skew distribution, but it is not
necessarily applicable to the physical processes that we
consider. We are not aware of a derivation of a skew PDF
from an entropy principle generalizing that of Tsallis, but
our results provide a reason to search for such a derivation
and generalization.
[7] The parameter Bt is associated with the standard

deviation of the Tsallis distribution and Ct to the skewness
of the distribution function. The sign of Ct in equation (2)
dictates the sense of skewness of the distribution. For large
negative (positive) Ct values the skewness of the distribu-
tion is towards positive (negative) dVt. In order to relate the
notation in equation (1) to that used by BF to describe PDFs
over a wide range of scales t, we substituted dVt for x and
the subscript t for the subscript k in the last expression on
the RHS of equation (1) to obtain equation (2). The
coefficients At, Bt, and Ct are functions of t, as is k �
1/(q(t) � 1). Here dVt � dVn(ti) � V(ti + t) � V(ti) where
V(ti) is the speed measured at hour ti (ti = 1, 2, . . . 8,759),
and dVt is a speed increment at ti measured at lag t. In
Section 3 we consider tn � 2n (hours), n = 0, 1, . . ., 12, and
the corresponding sets of speed increments dVn. The lag tn
determines the scale of the fluctuations represented by
dVn(ti). Section 4 considers a case for very small scales
with t = 64 sec. The effect of shocks is evident at lags of
64 sec and 1 hour.

3. The Observed PDFs and the Generalized
Tsallis Distribution

3.1. Observed PDFs and Their Physical Significance

[8] Burlaga and Forman [2002] used 8,759 hour
averages of V(ti) measured by ACE [McComas et al.,
1998] at 1 AU during 1999 to compute the PDFs of dVn
over a wide range of scales. Following BF, we consider
explicitly the PDFs of dVn for 6 representative scales (n =
0, 2, 4, 6, 9, and 11) corresponding to lags of t0 = 1 hour,
t2 = 4 hour, t4 = 16 hours, t6 = 1.3 days, t9 = 21.3 days,
and t11 = 85.3 days, respectively. The scales were chosen to
illustrate basic types of solar wind speed fluctuations and
the transitions between them. The PDFs for dVn(ti)
measured by BF on these scales are shown on a semi-log
scale as histograms of the percentage of counts in bins
versus dV by the points in Figure 1. The minimum value of
the PDFs, 	10�4, corresponds to 1 count/bin.
[9] At scale of 1 hour (n = 0) (Figure 1a) the fluctuations

dV1 are typical of intermittent turbulence [Kolmogorov,
1962] on small scales in the solar wind [Burlaga, 1991].
The PDF is very narrow and falls off steeply on a semilog
scale, and the PDF is asymmetric, there being more large
values of jdV1j for dV1 > 0 than for dV1 < 0, as noted by
Burlaga and Ogilvie [1970] for speed fluctuations at 1 AU
during 1967. High points on the tail of the distribution in
Figure 1a represent a few large jumps in V associated with
shocks, stream interfaces, and some discontinuities with
large shear. These features can strongly influence the
skewness and kurtosis of the distributions, although there
are large uncertainties in these statistics owing to the small
number of large speed jumps (see Section 4). The scale of
16 hours (Figure 1c) is in the range of the interaction
regions, where the largest positive changes in dV4 tend to

occur at the leading edges of streams. As a consequence of
stream steepening (faster plasma overtaking slower plasma),
there are steeper gradients of V at the front of the streams
than at the rear of the streams, giving the observed tail of the
PDF and the consequent skewness. The steepening is
related to the V.(grad V) term in the MHD equation of
motion. On a scale of 4 hours (Figure 1b) there is a
transition between intermittent turbulence and the changes
in V related to the streams. Accordingly, the PDF of dV2
has a shape and width intermediate between those of dV4
and dV0.
[10] The scale of 1.3 days (Figure 1d) is of the same order

of magnitude as that of magnetic clouds, complex ejecta,
corotating streams, and slow flows (1 to several days), so
the fluctuations dV6 tend to resemble the flows themselves.
The PDF of dV6 is broad, and it has an asymmetry
(skewness) related to the steepening and expansion of the
flows. The scale of 21.3 days (Figure 1e) is close to the
solar rotation period (27 days). On this scale one typically
observes a mixture of different types of flows and inter-
actions among flows. The PDF is broad, symmetric, and has
approximately a Gaussian form (a quadratic on a semi-log
scale). On scales larger than the solar rotation period, e.g.,
the scale of 85.3 days (Figure 1f), one observes a represent-

Figure 1. Probability distribution functions of changes of
the speed dVn at scales 2n hours, n = 0, 2, 4, 6, 9, and 11
observed by ACE (dots) and fitted by the generalized Tsallis
distribution function (solid curves). The generalized Tsallis
distribution provides good fits to the observed PDFs over the
full range of scales considered. At large scales, 85.3 days,
the PDF approaches a Gaussian, shown by the dashed curve
in panel (f ).
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ative sample of the variety of flows characteristic of a
particular epoch of the solar cycle activity. On these scales,
the PDFs are nearly Gaussian. A fit of the observed PDF
of dV11 to a Gaussian, shown by the dashed curve in
Figure 1f, provides a good fit to the data.

3.2. Fitting the Observed PDFs With the
Generalized Tsallis Distribution

[11] We shall now show that all of the different PDFs
observed by BF, over the full range of scales from 1 hour to
�85.3 days, can be described by a single function—the
generalized Tsallis distribution function, Rqt(dVn) given by
equation (2). We carried out a weighted non-linear least
squares fit to each of the observed PDFs (the points in each
of the panels in Figure 1) with Rqt(dVn) for n = 0, 2, 4, 6, 9,
and 11, respectively, using the Levenberg-Marquardt algo-
rithm [Levenberg, 1944; Marquardt, 1963; Bard, 1974].
The results of each of the fits are plotted as the curves in
Figures 1a–1f. The theoretical curve provides excellent fits
to all of the observed PDFs, from scales of 1 hour to
85.3 days. Non-linear fits of Rqt(dVn) to the PDFs for the
other values of n, not shown for brevity, are also very good
as demonstrated below.
[12] The generalized Tsallis distribution accurately

describes the observed PDFs of dVn over nearly four
decades of scales, representing the various types of motions
ranging from intermittent turbulent containing shocks and
discontinuities on the smallest scales, to various types of

flows (complex ejecta, magnetic clouds, corotating streams,
and slow flows) at intermediate scales, and to collections of
all of these types of motions at scales of the order of 1 to
3 solar rotations and more.
[13] A fit of Rqt(dVt) to an observed PDF at scale t

gives a set of parameters: k(t) = 1/(q(t) � 1), Bt, Ct, and a
normalization constant At. We computed a fit and this set of
parameters for each of the PDFs observed at scales tn =
2n hours for n = 0, 1, 2, . . .., 12. The resulting values of qn,
Bn, and Cn are plotted versus tn in Figures 2a, 2b, and 2c,
respectively. Each set of values of qn and Bn versus tn was
fitted with the logistic function, y = A2 + (A1 � A2)/(1 +
(x/xo)p) and the resulting curves q(t) and log(B(t)) are
plotted in Figures 2a and 2b, respectively. Each of the
curves q(t) and log(B(t)) provides a good fit to the
corresponding values derived from the fits of the observed
PDFs to the generalized Tsallis distribution Rqt (dVt) at the
scales t. Note that q = 1.68 ± 0.11 at a scale of 1 hr (close to
the limit q = 1.5 discussed by Beck [2001]), and q = 1.06 ±
0.03 at a scale of 171 days approaching the Gaussian limit
q = 1 of the Tsallis distribution. The curve log(�C(t)) in
Figure 2c is approximately a cubic polynomial from 1 hour
to several days, beyond which C is close to zero. From the
fits to the observed PDFs discussed above we calculated
moments (the standard deviation, skewness, and kurtosis),
and we found that the computed moments versus scale
agree with the observed moments versus scale discussed
by BF.

4. The Probability Distributions at a
Scale of 64 sec

[14] Here we consider whether the generalized Tsallis
distribution can also describe the speed fluctuations at a
very small scale, t = 64 sec. Again, we consider the ACE
data for 1999, but now we consider 31,575 points (64 sec
averages of V). The probability distribution of dV64s is
shown by the squares in Figure 3. The lowest points in the
PDF correspond to 1 count per bin; although the associated
uncertainties are large, the points are significant because

Figure 2. The generalized Tsallis distribution has four
parameters A, q, B, C that vary with scale. The values
determined by fitting the Tsallis distributions to the
observations are shown by the solid squares. Fits of the
logistic function to these points for q and B as a function of
scale are shown by the curves in (a) and (b). The fit to
�C in (c) is a cubic polynomial; in the Gaussian range
C fluctuates about 0.

Figure 3. The PDF for very small scale speed fluctuations,
at a lag of 64 sec, is shown by the solid squares. The solid
curve is a fit of the data points to the generalized Tsallis
distribution, and the dashed curve is a fit to the Tsallis
distribution.
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they represent major structures in the solar wind such as
shocks.
[15] The solid curve in Figure 3 is a fit of the generalized

Tsallis distribution (equation (2)) to the data. The fit is
excellent over 3 decades, and it is consistent with all of the
observations within the uncertainties, over more than
4 decades. The dashed curve in Figure 3 is a fit of the
Tsallis distribution (equation (1)) to the data. This fit is also
excellent over 3 decades, and it too is consistent with all
of the observations within the uncertainties. The Tsallis
distribution differs from the generalized Tsallis distribution
only for small values in the negative wing of the observed
PDF. Note that q = 1.656 ± 0.070 for the Tsallis distribution
and q = 1.544 ± 0.020 for the generalized Tsallis distribu-
tion, close to the limit q = 1.5 discussed by Beck [2001].
The results of this section and Section 3 show that the
generalized Tsallis distribution describes the observed PDFs
on scales from 64 sec to 171 days, the ratio of scales being
203,850, more than 5 orders of magnitude.

5. Summary and Discussion

[16] We have shown that the probability distributions of
changes in the solar speed observed at 1 AU during 1999
[Burlaga and Forman, 2002] over nearly four decades of
scales, from 1 hour to 171 days (6 solar rotation periods)
can be described by a single distribution function with
3 scale-dependent parameters and a normalization constant.
One can also describe the PDF of the speed variations during
1999 on a scale of 64 sec by the same function. The function
is a simple generalization of the Tsallis q-distribution that
was derived from nonextensive statistical mechanics,
viz., Rqt[dVn(t)] = At [1 + Bt (dVn)2/k + Ct (dVn)3]�k,
which reduces to the Tsallis distribution function when the
‘‘skewness coefficient’’ Ct = 0. Here k = 1/(q � 1), where
q is the nonextensive entropy parameter introduced by
Tsallis. The distribution is kurtotic and skewed at small
scales where k is small, and it approaches a Gaussian at large
scales in the limit as k goes to infinity (q = 1; k = 1).
[17] The generalized Tsallis distribution describes several

types of motions in the solar wind at 1 AU: (1) intermittent
turbulence and shocks on the smallest scales; (2) magnetic
clouds, complex ejecta, corotating streams, slow flows,
interaction regions, etc. on intermediate scales; and
(3) systems of interacting flows involving all of these
features, on scales greater than the solar rotation period.
[18] The q, B, and C in the generalized Tsallis distribu-

tion are functions describing the different types of speed
fluctuations in the solar wind on scales from 1 hour to
171 days. We have shown that the curves q(t) and B(t)
derived from the fits of the generalized Tsallis distribution

to the observed PDFs at different scales at 1 AU during
1999 can be described by the logistic function.
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L. F. Burlaga and A. F.-Viñas, Laboratory for Extraterrestrial Physics,

NASA Goddard Space Flight Center, Mail Code 692, Bldg. 21, Rm. 244,
Greenbelt, MD 20771, USA. (leonard.f.burlaga@nasa.gov)
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